Abstract
The Sawada-Kotera equation with a nonvanishing boundary condition, which models the evolution of steeper waves of shorter wavelength than those depicted by the Korteweg de Vries equation, is analyzed and also the perturbed Korteweg de Vries (pKdV) equation. For this goal, a capable method known as the multiple exp-function scheme (MEFS) is formally utilized to derive the multiple soliton solutions of the models. The MEFS as a generalization of Hirota’s perturbation method actually suggests a systematic technique to handle nonlinear evolution equations (NLEEs).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have