Abstract
A multiple scattering propagation model of narrow light beams in aerosol media is described. It is based on a paraxial approximation of the radiative transfer equation in which the flux normal to the incident beam direction is modeled by a diffusion process. The model solutions are the forward- and backscattered intensity profiles for the specified geometry and receiver aperture and field of view. The required inputs are the system parameters, and the aerosol single scattering angular phase function and extinction and scattering coefficients which are allowed to vary along the beam axis. Good agreement is shown with measurements performed in the laboratory over scales ranging from a few tens of mm to a few m, and in the atmosphere over a scale of the order of 1 km. The solutions are valid for optical depths smaller than ≈ 10, for phase functions corresponding to average size parameters of order one or greater, and for off-axis positions not exceeding ≈ 25% of the reciprocal of the scattering coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.