Abstract
An ensemble of resonators arranged on a subwavelength scale is usually considered as a bulk effective medium, known as a metamaterial, and can offer unusual macroscopic properties. Here, we take a different approach and limit ourselves to the study of only a few number of such elementary components and demonstrate that they still offer uncommon opportunities. Typically, owing to the multiple scattering and the phase shift that the resonances offer, we observe fields that vary at scales completely independent of the wavelength in free space. By smartly tuning the resonance frequencies, we can design at will the complex current distribution in those resonators. This way, we design a superdirective antenna, i.e., an antenna that is surprisingly more directive than its size would foreshadow. This approach is verified numerically and experimentally in the context of microwaves, but this applies to any wave field where subwavelength resonators exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.