Abstract
The dynamical behavior of a general n-dimensional delay differential equation (DDE) around a 1:3 resonant double Hopf bifurcation point is analyzed. The method of multiple scales is used to obtain complex bifurcation equations. By expressing complex amplitudes in a mixed polar-Cartesian representation, the complex bifurcation equations are again obtained in real form. As an illustration, a system of two coupled van der Pol oscillators is considered and a set of parameter values for which a 1:3 resonant double Hopf bifurcation occurs is established. The dynamical behavior around the resonant double Hopf bifurcation point is analyzed in terms of three control parameters. The validity of analytical results is shown by their consistency with numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.