Abstract

The congestion control algorithm, which has dynamic adaptations at both user ends and link ends, with heterogeneous delays is considered and analyzed. Some general stability criteria involving the delays and the system parameters are derived by generalized Nyquist criteria. Furthermore, by choosing one of the delays as the bifurcation parameter, and when the delay exceeds a critical value, a limit cycle emerges via a Hopf bifurcation. Resonant double Hopf bifurcation is also found to occur in this model. An efficient perturbation-incremental method is presented to study the delay-induced resonant double Hopf bifurcation. For the bifurcation parameter close to a double Hopf point, the approximate expressions of the periodic solutions are updated iteratively by use of the perturbation-incremental method. Simulation results have verified and demonstrated the correctness of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.