Abstract

Dynamical processes on networks are currently being considered in different domains of cross-disciplinary interest. Reaction-diffusion systems hosted on directed graphs are in particular relevant for their widespread applications, from computer networks to traffic systems. Due to the peculiar spectrum of the discrete Laplacian operator, homogeneous fixed points can turn unstable, on a directed support, because of the topology of the network, a phenomenon which cannot be induced on undirected graphs. A linear analysis can be performed to single out the conditions that underly the instability. The complete characterization of the patterns, which are eventually attained beyond the linear regime of exponential growth, calls instead for a full nonlinear treatment. By performing a multiple time scale perturbative calculation, we here derive an effective equation for the nonlinear evolution of the amplitude of the most unstable mode, close to the threshold of criticality. This is a Stuart-Landau equation the complex coefficients of which appear to depend on the topological features of the embedding directed graph. The theory proves adequate versus simulations, as confirmed by operating with a paradigmatic reaction-diffusion model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.