Abstract
The vertical hydraulic conductivity (Kv) of a 30-m thick surficial clayey aquitard overlying a regional aquifer at an industrial site in the Mississippi River Valley in Louisiana was investigated via intensive hydraulic characterization using high resolution vertical hydraulic head profiles with temporal monitoring and laboratory tests. A study area was instrumented with a semi-circular array of piezometers at many depths in the aquitard at equal distance from a large capacity pumping well including replicate piezometers. Profiles showed negligible head differential to 20 m bgs, below which there was an abrupt change in vertical gradients over the lower 8–10 m of the aquitard. Hydraulic characteristics are strongly associated with depositional environment; the upper zone of minimal head differentials with depth and minimal variation over time correlates with Paleo-Mississippi River backswamp deposits, while the lower zone with large head differentials and slow but moderate head changes correlates with lacustrine deposits. The lower zone restricts groundwater flow between the surface and underlying regional aquifer, which is hydraulically connected to the Mississippi River. Lab tests on lacustrine samples show low Kv (8 × 10−11–4 × 10−9 m/s) bracketing field estimates (6 × 10−10 m/s) from 1-D model fits to piezometric data in response to large aquifer head changes. The slow response indicates absence of through-going open fractures in the lacustrine unit, consistent with geotechnical properties (high plasticity, normal consolidation), suggesting high integrity that protects the underlying aquifer from surficial contamination. The lack of vertical gradients in the overlying backswamp unit indicates abundant secondary permeability features (e.g. fractures, rootholes) consistent with depositional and weathering conditions. 2-D stylized transient flow simulations including both units supports this interpretation. Other published reports on surficial aquitards in the Gulf Coast Region pertain to Pleistocene deposits that lack laterally extensive lacustrine units and where Kv is enhanced by secondary permeability features, resulting in clayey aquitards with poor integrity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.