Abstract

Mass wasting processes are a common phenomenon along the continental margin of NW-Africa. Located on the high-upwelling regime off the Mauritanian coastline, the Mauritania Slide Complex (MSC) is one of the largest events known on the Atlantic margin with an affected area of ∼30 000 km 2. Understanding previous failure events as well as its current hazard potential are crucial for risk assessment with respect to offshore installations and tsunamis. We present the results of geotechnical measurements and strain analyses on sediment cores taken from both the stable and the failed part of the MSC and compare them to previously published geophysical and sedimentological data. The material originates from water depths of 1500–3000 m and consists of detached slide deposits separated by undisturbed hemipelagic sediments. While the hemipelagites are characterized by normal consolidation with a downward increase in bulk density and shear strength (from 1.68 to 1.8 g/cm 3, 2–10 kPa), the slid deposits of the uppermost debris flow event preserve constant bulk density values (1.75 and 1.8 g/cm 3) with incisions marking different flow events. These slid sediments comprise three different matrix types, with normal consolidation at the base (OCR = 1.04), strong overconsolidation (OCR = 3.96) in the middle and normal consolidation to slight overconsolidation at the top (OCR = 0.91–1.28). However, the hemipelagic sediments underlying the debris flow units, which have been 14C dated at <24 ka BP, show strong to slight underconsolidation (OCR = 0.65–0.79) with low friction coefficients of μ = 0.18. Fabric analyses show deformation intensities R ≥ 4 (ratio σ 1/ σ 3) in several of the remobilized sediments. Such high deformation is also attested by observed disintegrated clasts from the underlying unit in the youngest debrites ( 14C-age of 10.5–10.9 ka BP). These clasts show strong consolidation and intense deformation, implying a pre-slide origin and amalgamation into the mass transport deposits. While previous studies propose an emplacement by retrogressive failure for thick slide deposits separated by undisturbed units, our new data on geotechnical properties, strain and age infer at least two different source areas with a sequential failure mechanism as the origin for the different mass wasting events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.