Abstract

Echinochloa phyllopogon is a self-pollinating allotetraploid weed and a serious threat to global rice production. One sensitive and three multiple-resistant populations collected from two provinces of Northeast China were used to analyze the mechanism of multiple resistance of E. phyllopogon to penoxsulam, metamifop, and quinclorac. Compared with the sensitive population LN12, LN1 showed higher resistance to these three herbicides; LN24 showed medium resistance to penoxsulam and metamifop and higher resistance to quinclorac (274-fold); HLJ4 showed low resistance to penoxsulam and high resistance to metamifop and quinclorac. Target sequence analysis showed no mutations in acetolactate synthase or acetyl-CoA carboxylase genes. In-vitro enzyme activity analysis showed that the activity of the target enzyme of multiple herbicide-resistant populations was similar to that of the sensitive population. The P450 inhibitor, malathion, noticeably increased the sensitivity of LN1, LN24, and HLJ4 to penoxsulam, LN1 to metamifop, and HLJ4 to quinclorac. Under all four treatments, the GSTs activities of resistant and sensitive populations showed an increasing trend from day 1 to day 5, but the sensitivity and activity of GSTs were higher in the multiple-resistant population than that in the sensitive population LN12. This study identified the development of multiple-resistant E. phyllopogon populations that pose a serious threat to rice production in rice fields in Northeast China, preliminarily confirming that multiple-resistance was likely due to non-target-site resistance mechanisms. These populations of E. phyllopogon are likely to be more difficult to control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call