Abstract

The synchronous improvement of ionic diffusivity and electronic conductivity of Ti2Nb10O29 (TNO) is of enormous significance for boosting its high electrochemical performance. In our work, a novel gradient carbon coating strategy was first proposed to synthesize the pomegranate-type N-doped carbon coated TNO microspheres (TNO@NPC), in which not only TNO microspheres but also TNO secondary nanoparticles surfaces are uniformly coated with an ultrathin carbon film. The study results demonstrate that such ingenious configuration can combine conductive coatings, nanocrystallization technology, and defect engineering together to greatly improve the ionic diffusivity and electronic conductivity. Moreover, the carbon coatings as the armor can effectively inhibit the volume change of TNO, and thus enhance its cycling durability. Density functional theory (DFT) calculations were also employed to illustrate the nature influence on lithium-ion diffusion coefficient and electronic conductivity. Attributing to the synergistic effect, the TNO@NPC exhibit superior rate capability (328 mA h g−1 at 0.1 C and 258 mA h g−1 at 10 C) and remarkable cyclability (210 mA h g−1 at 10 C after 1000 cycles) in half-cells. The full-cell of LiFePO||TNO@NPC also show notable rate capability (271 mA h g−1 at 0.2 C and 211 mA h g−1 at 10 C) and remarkable cyclability (178 mA h g−1 at 10 C after 1000 cycles). This ingenious structural design may provide a new direction for the construction of other high-quality electrodes in lithium-ion batteries (LIBs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.