Abstract

Multiple phytohormones, including auxin, ethylene, and cytokinin, play vital roles in regulating cell development in the root epidermis. However, their interactions in specific root hair cell developmental stages are largely unexplored. To bridge this gap, we employed genetic and pharmacological approaches as well as transcriptional analysis in order to dissect their distinct and overlapping roles in root hair initiation and elongation in Arabidopsis thaliana Our results show that among auxin, ethylene, and cytokinin, only ethylene induces ectopic root hair cells in wild-type plants, implying a special role of ethylene in the hair initiation stage. In the subsequent elongation stage, however, auxin, ethylene, and cytokinin enhance root hair tip growth equally. Our data also suggest that the effect of cytokinin is independent from auxin and ethylene in this process. Exogenous cytokinin restores root hair elongation when the auxin and ethylene signal is defective, whereas auxin and ethylene also sustain elongation in the absence of the cytokinin signal. Notably, transcriptional analyses demonstrated that auxin, ethylene, and cytokinin regulate a similar set of root hair-specific genes. Together these analyses provide important clues regarding the mechanism of hormonal interactions and regulation in the formation of single-cell structures.

Highlights

  • Supplementary Figure S1. aux1 mutant is insensitive to exogenous auxin ethylene. (A) Images of root hair region of aux1 seedlings grown on MS plate or MS plate supplemented with IAA or ACC are shown

  • Scale bar=200 M. (B) Average root hair lengths of aux1 seedlings grown on MS plate or MS plate supplemented with IAA or ACC are shown

  • Aux1 mutant is insensitive to exogenous auxin ethylene

Read more

Summary

Introduction

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call