Abstract
The automatic detection of multiple objects in ground penetrating radar (GPR) data is investigated by searching for the reflected hyperbolas of buried objects, which can reduce the subjectivity of operators and improve identification accuracy. Based on Frequency-wavenumber (F-K) migration, the accurate calculation of electromagnetic wave velocity (AC-EWV) is proposed by searching for the minimum image entropy of migrated radargrams. To avoid global searching, potential positions of object hyperbolas are selected from the binarized radargram through the vertical gray gradient searching, then the sub_window is extracted with the potential position as the center. The best fitting hyperbola is detected with the genetic algorithm (GA) in the sub_window, and objects are finally determined with five hyperbolic matching criteria and the auto-categorization. This technique is verified with the simulated and measured GPR data about rebars, pipelines, and voids, and results demonstrate that it achieves the average correct rate, average missed rate, and the average misjudged rate is 98.46%, 1.33%, and 0.36%, respectively, and the average correct rate for GPR data of the double-layer rebars is 91.67%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.