Abstract
P>A joint analysis of full-waveform information content in ground penetrating radar (GPR) and electromagnetic induction (EMI) synthetic data was investigated to reconstruct the electrical properties of multilayered media. The GPR and EMI systems operate in zero-offset, off-ground mode and are designed using vector network analyser technology. The inverse problem is formulated in the least-squares sense. We compared four approaches for GPR and EMI data fusion. The two first techniques consisted of defining a single objective function, applying different weighting methods. As a first approach, we weighted the EMI and GPR data using the inverse of the data variance. The ideal point method was also employed as a second weighting scenario. The third approach is the naive Bayesian method and the fourth technique corresponds to GPR-EMI and EMI-GPR sequential inversions. Synthetic GPR and EMI data were generated for the particular case of a two-layered medium. Analysis of the objective function response surfaces from the two first approaches demonstrated the benefit of combining the two sources of information. However, due to the variations of the GPR and EMI model sensitivities with respect to the medium electrical properties, the formulation of an optimal objective function based on the weighting methods is not straightforward. While the Bayesian method relies on assumptions with respect to the statistical distribution of the parameters, it may constitute a relevant alternative for GPR and EMI data fusion. Sequential inversions of different configurations for a two layered medium show that in the case of high conductivity or permittivity for the first layer, the inversion scheme can not fully retrieve the soil hydrogeophysical parameters. But in the case of low permittivity and conductivity for the first layer, GPR-EMI inversion provides proper estimation of values compared to the EMI-GPR inversion.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.