Abstract

The first step in the biosynthesis of leucine is catalyzed by alpha-isopropylmalate (alpha-IPM) synthase. In the yeast Saccharomyces cerevisiae, LEU4 encodes the isozyme responsible for the majority of alpha-IPM synthase activity. Yeast strains that bear disruption alleles of LEU4, however, are Leu+ and exhibit a level of synthase activity that is 20% of the wild type. To identify the gene or genes that encode this remaining activity, a leu4 disruption strain was mutagenized. The mutations identified define three new complementation groups, designated leu6, leu7 and leu8. Each of these new mutations effect leucine auxotrophy only if a leu4 mutation is present and each results in loss of alpha-IPM synthase activity. Further analysis suggests that LEU7 and LEU8 are candidates for the gene or genes that encode an alpha-IPM synthase activity. The results demonstrate that multiple components determine the residual alpha-IPM synthase activity in leu4 gene disruption strains of S. cerevisiae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.