Abstract
A theoretical analysis of a design of multiple narrow bandpass filters based on one-dimensional (1D) rugate photonic structures with a period jump defect is presented. The optical properties, including transmittance and energy density distributions, are numerically calculated using the propagation matrix method. Our results show that multiple resonance transmission modes are produced when the period jump defect is introduced into the 1D rugate film. Both blueshift and redshift of the stop band of the rugate structure and wavelengths of resonant modes are observed, depending on the change of period jump. The number, the wavelengths, the band intervals, and the intensities of multiple resonance transmission modes are tunable by adjusting structure parameters of the rugate structure. Experimental feasibility of the proposed multiple narrow bandpass optical filters using the technique of glancing angle deposition is also discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have