Abstract

Purpose To determine the diagnostic performance of dual-energy computed tomography (CT) for detection of bone marrow (BM) infiltration in patients with multiple myeloma by using a virtual noncalcium (VNCa) technique. Materials and Methods In this prospective study, 34 consecutive patients with multiple myeloma or monoclonal gammopathy of unknown significance sequentially underwent dual-energy CT and magnetic resonance (MR) imaging of the axial skeleton. Two independent readers visually evaluated standard CT and color-coded VNCa images for the presence of BM involvement. MR imaging served as the reference standard. Analysis on the basis of the region of interest (ROI) of VNCa CT numbers of infiltrated (n = 75) and normal (n = 170) BM was performed and CT numbers were subjected to receiver operating characteristic analysis to calculate cutoff values. Results In the visual analysis, VNCa images had an overall sensitivity of 91.3% (21 of 23), specificity of 90.9% (10 of 11), accuracy of 91.2% (31 of 34), positive predictive value of 95.5% (21 of 22), and a negative predictive value of 83.3% (10 of 12). ROI-based analysis of VNCa CT numbers showed a significant difference between infiltrated and normal BM (P < .001). Receiver operating characteristic analysis revealed an area under the curve of 0.978. A cutoff of -44.9 HU provided a sensitivity of 93.3% (70 of 75), specificity of 92.4% (157 of 170), accuracy of 92.7% (227 of 245), positive predictive value of 84.3% (70 of 83), and negative predictive value of 96.9% (157 of 162) for the detection of BM infiltration. Conclusion Visual and ROI-based analyses of dual-energy VNCa images had excellent diagnostic performance for assessing BM infiltration in patients with multiple myeloma with precision comparable to that of MR imaging. © RSNA, 2017 Online supplemental material is available for this article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call