Abstract

The multiple modulations of strain- and charge-mediated converse magnetoelectric coupling effects have been achieved in a multiferroic heterostructure of SrTiO3(STO)/Fe3O4/Au/PbZr0.52Ti0.48O3(PZT) multilayers grown on a Nb:SrTiO3 substrate. By altering the position of the applied electric field, the heterostructure is divided into three structure parts, i.e., Fe3O4/Au/PZT, STO/Fe3O4, and STO/Fe3O4/Au/PZT. In such an optimized heterostructure, the strain and charge effects can be directly separated, quantified, and co-regulated and the pure strain, pure charge, and the combined strain and charge effects can thus be obtained, respectively. The in-plane magnetization variation behaviors induced by electric fields are different for the three individual modulations, which are closely related to the interfacial strain propagation and interfacial charge accumulation. It is also found that the strain and charge effects can interact with each other as the two interfacial effects coexist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.