Abstract
Histatin 5 (Hist5) is an antimicrobial peptide found in human saliva as part of the innate immune system. Hist5 can bind several metal ions in vitro, and Zn2+ has been shown to function as an inhibitory switch to regulate the peptide's biological activity against the opportunistic fungal pathogen Candida albicans in cell culture. Here, we studied Zn2+ binding to Hist5 at four temperatures from 15 to 37 °C using isothermal titration calorimetry to obtain thermodynamic parameters that were corrected for competing buffer effects. Hist5 bound Zn2+ with a buffer-dependent association constant of ∼105 M-1 and a buffer-independent association constant of ∼6 × 106 M-1 at pH 7.4 and at all temperatures tested. Zn2+ binding was both enthalpically and entropically favorable, with larger entropic contributions at 15 °C and larger enthalpic contributions at 37 °C. Additionally, the Zn:Hist5 binding stoichiometry increased from 1:1 to 2:1 as temperature increased. The enthalpy-entropy compensation and the variable stoichiometry lead us to propose a model in which the Zn-Hist5 complex exists in an equilibrium between two distinct binding modes with different Zn:Hist5 stoichiometries. The in-depth thermodynamic analysis presented herein may help illuminate the biophysical basis for Zn-dependent changes in the antifungal activity of Hist5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.