Abstract
Four distinct binding modes for the interaction of Escherichia coli single-strand binding (SSB) protein with single-stranded (ss) DNA have been identified on the basis of quantitative titrations that monitor the quenching of the SSB protein fluorescence upon binding to the homopolynucleotide poly(dT) over a range of MgCl2 and NaCl concentrations at 25 and 37 degrees C. This is the first observation of multiple binding modes for a single protein binding to DNA. These results extend previous studies performed in NaCl (25 degrees C, pH 8.1), in which two distinct SSB-ss DNA binding modes possessing site sizes of 33 and 65 nucleotides per bound SSB tetramer were observed [Lohman, T.M., & Overman, L. B. (1985) J. Biol. Chem. 260, 3594-3603]. Each of these binding modes differs in the number of nucleotides occluded upon interaction with ss DNA (i.e., site size). Along with the previously observed modes with site sizes of 35 +/- 2 and 65 +/- 3 nucleotides per tetramer, a third distinct binding mode, at 25 degrees C, has been identified, possessing a site size of 56 +/- 3 nucleotides per bound SSB tetramer, which is stable over a wide range of MgCl2 concentrations. At 37 degrees C, a fourth binding mode is observed, possessing a site size of 40 +/- 2 nucleotides per tetramer, although this mode is observable only over a small range of salt concentration.(ABSTRACT TRUNCATED AT 250 WORDS)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have