Abstract

Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL-QMMAE) algorithms based on widely linear quaternion Kalman filters and Bayesian inference. The augmented second-order quaternion statistics is employed to capture complete second-order statistical information in improper quaternion signals. Within the WL-QMMAE framework, a widely linear quaternion interacting multiple-model algorithm is proposed to track time-variant model uncertainty, while a widely linear quaternion static multiple-model algorithm is proposed for time-invariant model uncertainty. A performance analysis of the proposed algorithms shows that, as expected, the WL-QMMAE reduces to semiwidely linear QMMAE for [Formula: see text]-improper signals and further reduces to strictly linear QMMAE for proper signals. Simulation results indicate that for improper signals, the proposed WL-QMMAE algorithms exhibit an enhanced performance over their strictly linear counterparts. The effectiveness of the proposed recursive performance analysis algorithm is also validated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call