Abstract

A multiple model adaptive control (MMAC) methodology is used to control the critical parameters of a solid oxide fuel cell gas turbine (SOFC-GT) cyberphysical simulator, capable of characterizing 300 kW hybrid plants. The SOFC system is composed of a hardware balance of plant (BoP) component, and a high fidelity FC model implemented in software. This study utilizes empirically derived transfer functions (TFs) of the BoP facility to derive the MMAC gains for the BoP system, based on an estimation algorithm which identifies current operating points. The MMAC technique is useful for systems having a wide operating envelope with nonlinear dynamics. The practical implementation of the adaptive methodology is presented through simulation in the matlab/simulink environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.