Abstract

Solid oxide fuel cell gas turbine (SOFC-GT) hybrid systems for producing electricity have received much attention due to high-predicted efficiencies, low pollution and availability of natural gas. Due to the higher value of peak power, a system able to meet fluctuating power demands while retaining high efficiencies is strongly preferable to base load operation. SOFC systems and hybrid variants designed to date have had narrow operating ranges due largely to the necessity of heat management within the fuel cell. Such systems have a single degree of freedom controlled and limited by the fuel cell. This study will introduce a new SOFC-GT hybrid configuration designed to operate over a 5:1 turndown ratio, while maintaining the SOFC stack exit temperature at a constant 1000 °C. The proposed system introduces two new degrees of freedom through the use of a variable-geometry nozzle turbine to directly influence system airflow, and an auxiliary combustor to control the thermal and power needs of the turbomachinery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call