Abstract

Developing efficient oxygen evolution reaction (OER) electrocatalysts is of great importance for sustainable energy conversion and storage. Ni-based catalysts have shown great potential as OER electrocatalysts, but their performance still needs to be improved. Herein, we report the multiple metal doped nickel nanoparticles synthesized via a simple oil phase strategy as efficient OER catalysts. The FeMnMoV–Ni exhibits superior OER performance with an overpotential of 220 ​mV at 10 ​mA ​cm−2 and a long-term stability of 250 ​h in 1 ​M KOH solution. In situ Raman analysis shows that the NiOOH site works as the active center and multiple metallic dopants facilitate the formation of NiOOH. Mo and V dopants promote the formation of high-valence state of Ni sites, and Mn dopants increase the electrochemical active surface area and expose more active sites. This work provides a novel strategy for catalyst design, which is critical for developing multiple metal doped catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call