Abstract

Utilizing renewable electricity for water electrolysis offers a promising way for generating high-purity hydrogen gases while mitigating the emission of environmental pollutants. To realize the water electrolysis, it is necessary to develop highly active and precious metal-free electrocatalyst for oxygen evolution reaction (OER) which incurs significant overpotential due to its complicated four-electron transfer mechanism. Hence, we propose a facile preparation method for hollow-structured Fe and F dual-doped CoS2 nanosphere (Fe-CoS2-F) as an efficient OER electrocatalyst. The uniform hollow and porous structure of Fe-CoS2-F enlarge the specific surface area and increase the number of exposed active sites. Furthermore, the Fe and F dual-dopants synergistically contributed to the adjustment of electronic structure, thereby promoting the adsorption/desorption of oxygen-containing reaction intermediates on active sites during the alkaline OER procedure. As a result, the prepared Fe-CoS2-F exhibits outstanding OER activity, characterized by a low overpotential of 298 mV to achieve a current density of 10 mA cm−2 and a Tafel slope as small as 46.0 mV dec−1. Based on computational theoretical calculations, the introduction of the dual-dopants into CoS2 structure reduce the excessively strong adsorption energy of reaction intermediate in the rate determining step, leading to effectively promoted electrocatalytic cycle for OER in alkaline environment. This study presents an effective strategy for preparing noble metal-free OER electrocatalysts with promising potential for large-scale industrial water electrolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.