Abstract
Diabetic vascular complications are related to a combination of oxidative stress and hyperglycemia. Here we investigate the effect and mechanism of soy isoflavones on oxidative stress-induced endothelial cell injury. Oxidative stress was modeled in primary cultured human umbilical vein endothelial cells by incubation with H 2O 2 and high glucose. Genistein and daidzein protected the cells against H 2O 2-induced apoptosis and their protective actions were abolished by ICI 182780, an estrogen receptor antagonist. The inhibition of cell proliferation by oxidative stress was prevented by genistein and daidzein under normal glucose conditions, but they were less effective at high glucose levels. Genistein and daidzein upregulated the estrogen receptor ERβ and increased Bcl-2 expression. Silencing of Bcl-2 with siRNA abolished the protection of genistein. Moreover, inhibition of the PI3K and Rho A/Rho kinase pathways by wortmannin and Y-27632 altered the effects of genistein and daidzein on cell survival. We conclude that oxidative stress-induced apoptosis and cell proliferation inhibition can be prevented by soy isoflavones via the regulation of ERβ and Bcl-2/Bax expression and modulation of cell survival signaling, such as the PI3K pathway. These findings imply that multiple mechanisms are involved in the beneficial effects of soy isoflavone supplements for diabetic endothelial injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.