Abstract

We summarize the literature on rates of multiple paternity and sire numbers per clutch in viviparous fishes vs. mammals, two vertebrate groups in which pregnancy is common but entails very different numbers of embryos (for species surveyed, piscine broods averaged >10-fold larger than mammalian litters). As deduced from genetic parentage analyses, multiple mating by the pregnant sex proved to be common in assayed species but averaged significantly higher in fish than mammals. However, within either of these groups we found no significant correlations between brood size and genetically deduced incidence of multiple mating by females. Overall, these findings offer little support for the hypothesis that clutch size in pregnant species predicts the outcome of selection for multiple mating by brooders. Instead, whatever factors promote multiple mating by members of the gestating sex seem to do so in surprisingly similar ways in live-bearing vertebrates otherwise as different as fish and mammals. Similar conclusions emerged when we extended the survey to viviparous amphibians and reptiles. One notion consistent with these empirical observations is that although several fitness benefits probably accrue from multiple mating, logistical constraints on mate-encounter rates routinely truncate multiple mating far below levels that otherwise could be accommodated, especially in species with larger broods. We develop this concept into a "logistical constraint hypothesis" that may help to explain these mating outcomes in viviparous vertebrates. Under the logistical constraint hypothesis, propensities for multiple mating in each species register a balance between near-universal fitness benefits from multiple mating and species-idiosyncratic logistical limits on polygamy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.