Abstract
In Ta/CoFeB/HfO2 stacks a gate voltage drives, in a nonvolatile way, the system from an underoxidized state exhibiting in-plane anisotropy (IPA) to an optimum oxidation level resulting in perpendicular anisotropy (PMA) and further into an overoxidized state with IPA. The IPA$\,\to\,$PMA regime is found to be significantly faster than the PMA$\,\to\,$IPA regime, while only the latter shows full reversibility under the same gate voltages. The effective damping parameter also shows a marked dependence with gate voltage in the IPA$\,\to\,$PMA regime, going from 0.029 to 0.012, and only a modest increase to 0.014 in the PMA$\,\to\,$IPA regime. The existence of two magneto-ionic regimes has been linked to a difference in the chemical environment of the anchoring points of oxygen species added to underoxidized or overoxidized layers. Our results show that multiple magneto-ionic regimes can exist in a single device and that their characterization is of great importance for the design of high performance spintronics devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.