Abstract

Multiple linear regression (MLR) modeling has been successfully used to predict how water chemistry variables influence the toxicity of cationic metals to aquatic organisms, but no MLR model exists for vanadium (V). Recent research has indicated that an increase in pH (from 6 to 9), or high concentrations of sodium (473 mg Na+ /L), increase V toxicity to Daphnia pulex. In contrast, increases in alkalinity (>100 mg as CaCO3 ) and sulfate (>100 mg SO42- /L) reduce V toxicity. How these variables influence V toxicity to Oncorhynchus mykiss (rainbow trout) was still unknown. Our results show that increasing pH from 6.2 to 8.9 tended to decrease the 96-h median lethal concentration (LC50) for V toxicity to O. mykiss by 9.6 mg V/L. An alkalinity increase from 71 to 330 mg/L as CaCO3 tended to increase the 96-h LC50 by 3.3 mg V/L, whereas when SO42- rose from 150 to 250 mg/L, the LC50 significantly increased by 0.3 mg V/L followed by a significant decrease of 1 mg V/L when SO42- was >250 mg/L. Sodium (between 100 and 336 mg/L) showed no effect on V toxicity to O. mykiss. The toxicity patterns for O. mykiss were similar to those observed for D. pulex, except for that of SO42- , potentially indicating different mechanisms of V uptake or regulation in the 2 species. The LC50s and associated water chemistry were combined to develop an MLR model for O. mykiss and D. pulex. Alkalinity and pH modified V toxicity to both species, whereas SO42- influenced V toxicity to D. pulex. Overall, MLR models should be considered for creating new local benchmarks or water quality guidelines for V. Environ Toxicol Chem 2020;39:1737-1745. © 2020 SETAC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.