Abstract

Human activity recognition is becoming the vital underpinning for a myriad of emerging applications in the field of human-computer interaction, mobile computing, and smart grid. Besides the utilization of up-to-date sensing techniques, modern activity recognition systems also require a machine learning (ML) algorithm that leverages the sensory data for identification purposes. In view of the unique characteristics of the measurement data and the ML challenges thereof, we propose a non-intrusive human activity recognition system that only uses existing commodity WiFi routers. The core of our system is a novel multiple kernel representation learning (MKRL) framework that automatically extracts and combines informative patterns from the Channel State Information (CSI) measurements. The MKRL firstly learns a kernel string representation from time, frequency, wavelet, and shape domains with an efficient greedy algorithm. Then it performs information fusion from diverse perspectives based on multi-view kernel learning. Moreover, different stages of MKRL can be seamlessly integrated into a multiple kernel learning framework to build up a robust and comprehensive activity classifier. Extensive experiments are conducted in typical indoor environments and the experimental results demonstrate that the proposed system outperforms existing methods and achieves a 98\% activity recognition accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call