Abstract
As one of the fastest spreading technologies and due to their rich sensing features, smartphones have become popular elements of modern human activity recognition systems. Besides activity recognition, smartphones have also been employed with success in fall detection/recognition systems, although a combined approach has not been evaluated yet. This article presents the results of a comprehensive evaluation of using a smartphone’s acceleration sensor for human activity and fall recognition, including 12 different types of activities of daily living (ADLs) and 4 different types of falls, recorded from 66 subjects in the context of creating “MobiAct”, a publicly available dataset for benchmarking and developing human activity and fall recognition systems. An optimized feature selection and classification scheme is proposed for each, a basic, i.e. recognition of 6 common ADLs only (99.9% accuracy), and a more complex human activity recognition task that includes all 12 ADLs and 4 falls (96.8% accuracy).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.