Abstract

A canonical assumption in dynamic atomic force microscopy is that the probe tip interacts with the sample once per oscillation cycle. We show this key ansatz breaks down for soft cantilevers in liquid environments. Such probes exhibit “drum roll” like dynamics with sequential bifurcations between oscillations with single, double, and triple impacts that can be clearly identified in the phase of the response. This important result is traced to a momentary excitation of the second flexural mode induced by tip-sample forces and low quality factors. Experiments performed on supported biological membranes in buffer solutions are used to demonstrate the findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.