Abstract

Hydrogen-based hybrid storage system has a high energy density, which can operate as the long-term storage system, and play an important role in future smart cities. In the hydrogen storage system, fuel cell, hydrogen tanks, and electrolyzer are often combined together and operating with complex electrochemical reactions. How to efficiently operate the hydrogen storage system and considering the convoluted electrochemical reactions is a problem. In addition, multiple hydrogen storage systems are often grouped together to supply the demands. Thus, cooperating the dispatching of these storage systems is another complicated problem. In this paper, we first present a two-dimension model considering temperature influences for hydrogen-based microgrid, where a regression method is adopted. Moreover, a combined allocating-and-dispatching methodology involving two layers is proposed to cooperate the multiple storage systems. Specifically, both TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) and fuzzy logic are adopted as the first-layer allocating algorithm. Then, the model predictive control (MPC) is utilized as the second-layer dispatching algorithm. Based on the combined method, power is firstly allocated to hybrid storage system considering each hybrid storage system health conditions, and secondly scheduled to battery storage and hydrogen storage based on MPC method. The simulation results showed that with the combined Dematel-TOPSIS and MPC algorithm, the degradation index and operation cost were the smallest among three algorithms, and can further extend the lifetime of hybrid hydrogen storage systems in microgrids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call