Abstract
Many bacterial and fungal secondary metabolites are produced by polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). Recently, it has been discovered that these modular enzymatic systems can also closely cooperate to form natural products. The analysis of the corresponding biosynthetic machineries, in the form of hybrid systems, is of special interest for combinatorial biosynthesis, because the combination of PKS and NRPS can lead to an immense variety of structures that might be produced. During our screening for hybrid PKS/NRPS systems from myxobacteria, we scanned the genome of Stigmatella aurantiaca DW4/3-1 for the presence of gene loci that encode both the PKS and NRPS genes. In addition to the previously characterized myxothiazol system, we identified three further hybrid loci, three additional PKS and one further NRPS gene locus. These were analyzed by hybridization, physical mapping, PCR with degenerate oligonucleotides and sequencing of fragments of the gene clusters. The function of these genes was not known but it had already been speculated that one compound produced by the strain and detected via HPLC was a secondary metabolite. This was based on the observation that its production is dependent on an active copy of the phosphopantetheinyl transferase gene mtaA. We show here that one of the identified hybrid gene loci is responsible for the formation of this secondary metabolite. In agreement with the genetic data, the chemical structure resembles a cyclic polypeptide with a PKS sidechain. Our data show that S. aurantiaca has a broader genetic capacity to produce natural products than the number of compounds isolated from the strain so far suggests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.