Abstract

The improvement of sensitivity in headspace (HS) sampling of not very volatile analytes constitutes a challenge that has usually been approached through coupling with additional techniques. Here we propose a new methodology for increasing sensitivity through a multistep approach. This proof of concept is based on direct coupling of a headspace sampler with a programmed temperature vaporizer (PTV) and a gas chromatograph (GC), with mass spectrometry (MS) detection. Analytes are extracted from the same vial in a stepwise procedure, splitting the headspace generation time of conventional HS into four periods and using the PTV to cryogenically trap the analytes during the successive HS samplings. Solvent vent mode is mandatory in order to retain the analytes, purging the gas solvent at an adequate initial low temperature and flash-heating the PTV liner in a quick ramp (720 °C/min), once the HS samplings are finished. Linear aldehydes, from pentanal to decanal, possible biomarkers of several diseases have been selected as model compounds. This multiple HS method has been compared with conventional HS, and it has been validated in terms of linearity, limits of detection, repeatability, reproducibility and accuracy. The limits of detection (LOD) ranged from 0.004 to 0.159 µg/L. Enrichment factors (EF) in relation to the conventional HS method ranged from 3.0 to 6.7, except for pentanal (EF: 0.8), which is too volatile and polar to be trapped in the PTV with the multiple HS methodology. Similar enrichment factors were obtained in a urine sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call