Abstract

Understanding and controlling the reversible isomerization of photoactive molecules in order to obtain a tunable optical response is desirable for many photofunctional applications. This study describes the interesting effects of an anionic cyclodextrin host (sulfated-βCD, SCD) on the photoisomerization and protonation equilibrium of an important hemicyanine dye (trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide, DSP). The SCD host assists in unlocking the photoisomerization potential of DSP by promoting protonation of the dye. It also assists in stabilizing the cis isomer of the protonated dye, thereby significantly delaying the reverse cis to trans isomerization of DSPH+. Furthermore, the interplay of both hydrophobic and electrostatic interactions in the complex formation of SCD with DSPH+ makes the reverse cis to trans isomerization of DSPH+ amenable to influence by the added salt. The stimuli-responsive reversible isomerization of SCD-DSPH+ is an interesting case from the perspective of chemical sensing or light operated functional materials with host-guest systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call