Abstract

Plasmids play a major role in bacterial adaptation to environmental stress and often contribute to antibiotic resistance and disease virulence. Although the complete sequence of each plasmid is essential for studying plasmid biology, most antibiotic resistance and virulence plasmids in Salmonella are present only in a low copy number, making extraction and sequencing difficult. Long read sequencing technologies require higher concentrations of DNA to provide optimal results. To resolve this problem, we assessed the sufficiency of multiple displacement amplification (MDA) for replicating Salmonella plasmid DNA to a satisfactory concentration for accurate sequencing and multiplexing. Nine Salmonella enterica isolates, representing nine different serovars carrying plasmids for which sequence data are already available at NCBI, were cultured and their plasmids isolated using an alkaline lysis extraction protocol. We then used the Phi29 polymerase to perform MDA, thereby obtaining enough plasmid DNA for long read sequencing. These amplified plasmids were multiplexed and sequenced on one single molecule, real-time (SMRT) cell with the Pacific Biosciences (Pacbio) Sequel sequencer. We were able to close all Salmonella plasmids (sizes ranged from 38 to 166 Kb) with sequencing coverage from 24 to 2,582X. This protocol, consisting of plasmid isolation, MDA, and multiplex sequencing, is an effective and fast method for closing high-molecular weight and low-copy-number plasmids. This high throughput protocol reduces the time and cost of plasmid closure.

Highlights

  • Salmonella enterica is a Gram-negative foodborne pathogen associated with 1.2 million foodborne illnesses, 23,000 hospitalizations, and 450 deaths in the United States every year (Scallan et al, 2011)

  • We developed a protocol for replicating low-copy number plasmid DNA in sufficient concentrations and quality to successfully close plasmid genomes

  • We evaluated that protocol using three experimental replicates of nine Salmonella isolates to identify potential amplification biases that could occur during the multiple displacement amplification (MDA) process

Read more

Summary

Introduction

Salmonella enterica is a Gram-negative foodborne pathogen associated with 1.2 million foodborne illnesses, 23,000 hospitalizations, and 450 deaths in the United States every year (Scallan et al, 2011). Prevalence of Salmonella isolates resistant to fluoroquinolones and third generation cephalosporin has been increasing in both clinical and agriculture settings (Karp et al, 2017). The National Antimicrobial Resistance Monitoring System (NARMS) has observed multidrug resistance Salmonella serotype doubling between the years 2011 and 2015 (CDC, 2018). The emergence of new isolates that are resistant to antibiotics, antimicrobials, sanitizers, and heavy metals complicates surveillance and prevention efforts worldwide. These forms of resistance reduce the available methods for treating patients who contract resistant forms of salmonellosis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call