Abstract

Mobile genetic elements (MGEs) are instrumental in natural prokaryotic genome editing, permitting genome plasticity and allowing microbes to accumulate genetic diversity. MGEs serve as a vast communal gene pool and include DNA elements such as plasmids and bacteriophages (phages) among others. These mobile DNA elements represent a human health risk as they can introduce new traits, such as antibiotic resistance or virulence, to a bacterial strain. Sequencing libraries targeting environmental circular MGEs, referred to as metamobilomes, may broaden our current understanding of the mechanisms behind the mobility, prevalence and content of these elements. However, metamobilomics is affected by a severe bias towards small circular elements, introduced by multiple displacement amplification (MDA). MDA is typically used to overcome limiting DNA quantities after the removal of non-circular DNA during library preparations. By examining the relationship between sequencing coverage and the size of circular MGEs in paired metamobilome datasets with and without MDA, we show that larger circular elements are lost when using MDA. This study is the first to systematically demonstrate that MDA is detrimental to detecting larger-sized plasmids if small plasmids are present. It is also the first to show that MDA can be omitted when using enzyme-based DNA fragmentation and PCR in library preparation kits such as Nextera XT® from Illumina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.