Abstract
Delay and Sum (DAS) is one of the most common beamforming algorithms for photoacoustic imaging (PAI) reconstruction. Based on calculating beamformed signal with simple delaying and summing, DAS can function in a quick response and is quite suitable for real-time PAI. However, high sidelobes and intense artifacts may appear when using DAS due to summing with unnecessary data. In this paper, a beamforming algorithm called Multiple Delay and Sum with Enveloping (multi-DASE) is introduced to solve this problem. Compared to DAS, the multi-DASE algorithm calculates not only the initial value of the beamformed signal but also the complete N-shaped photoacoustic signal for each pixel. Through computer simulation, a phantom experiment and experiment on human finger joint, the multi-DASE algorithm is compared with other beamforming methods in removing artifacts by evaluating the quality of the reconstructed images. Furthermore, by rearranging the calculation sequences, the multi-DASE algorithm can be computing in parallel using GPU acceleration to meet the needs of real-time clinical application.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have