Abstract
Abstract The effects of low frequency cold plasma treatments on the microstructure and chemistry of Polyethylene (PE) have been investigated. PE plates and fibers were exposed to plasmas of argon and oxygen gases. The surface wettabilities of plasma-treated plates were monitored. Possible physical changes on fiber surfaces were observed by a scanning electron microscope (SEM) at micrometer scale and by an atomic force microscope (AFM) at nanometer scale after this process. The effects of plasma treatment on surface chemistry of PE fibers have been analyzed by using an X-ray photoemission spectroscope (XPS). The fibers modified by plasma treatments were used in prismatic cementitious composites. The flexural performance of samples were characterized at two different ages (28 days and 8 months). Results showed that plasma treatment caused significant modifications on fibers’ surface structure and composites’ performance. Proper plasma treatment conditions significantly leads to improvement of multiple cracking behavior of fiber reinforced composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.