Abstract

The popular Sudoku puzzle bears structural resemblance to the problem of decoding linear error correction codes: solution is over a discrete set, and several constraints apply. We express the constraint satisfaction using a Tanner graph. The belief propagation algorithm is applied to this graph. Unlike conventional computer-based solvers, which rely on humanly specified tricks for solution, belief propagation is generally applicable, and requires no human insight to solve a problem. The presence of short cycles in the graph creates biases so that not every puzzle is solved by this method. However, all puzzles are at least partly solved by this method. The Sudoku application thus demonstrates the potential effectiveness of BP algorithms on a general class of constraint satisfaction problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.