Abstract

Many wireless communication systems such as IS-54, enhanced data rates for the GSM evolution (EDGE), worldwide interoperability for microwave access (WiMAX) and long term evolution (LTE) have adopted low-density parity-check (LDPC), tail-biting convolutional, and turbo codes as the forward error correcting codes (FEC) scheme for data and overhead channels. Therefore, many efficient algorithms have been proposed for decoding these codes. However, the different decoding approaches for these two families of codes usually lead to different hardware architectures. Since these codes work side by side in these new wireless systems, it is a good idea to introduce a universal decoder to handle these two families of codes. The present work exploits the parity-check matrix (H) representation of tail-biting convolutional and turbo codes, thus enabling decoding via a unified belief propagation (BP) algorithm. Indeed, the BP algorithm provides a highly effective general methodology for devising low-complexity iterative decoding algorithms for all convolutional code classes as well as turbo codes. While a small performance loss is observed when decoding turbo codes with BP instead of MAP, this is offset by the lower complexity of the BP algorithm and the inherent advantage of a unified decoding architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.