Abstract

The present paper is Part 2 in this series of two papers. In Part 1 we provided an introduction to Multiple Classifier Systems (MCS) with a focus into the fundamentals: basic nomenclature, key elements, architecture, main methods, and prevalent theory and framework. Part 1 then overviewed the application of MCS to the particular field of multimodal biometric person authentication in the last 25 years, as a prototypical area in which MCS has resulted in important achievements. Here in Part 2 we present in more technical detail recent trends and developments in MCS coming from multimodal biometrics that incorporate context information in an adaptive way. These new MCS architectures exploit input quality measures and pattern-specific particularities that move apart from general population statistics, resulting in robust multimodal biometric systems. Similarly as in Part 1, methods here are described in a general way so they can be applied to other information fusion problems as well. Finally, we also discuss here open challenges in biometrics in which MCS can play a key role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.