Abstract
We provide an introduction to Multiple Classifier Systems (MCS) including basic nomenclature and describing key elements: classifier dependencies, type of classifier outputs, aggregation procedures, architecture, and types of methods. This introduction complements other existing overviews of MCS, as here we also review the most prevalent theoretical framework for MCS and discuss theoretical developments related to MCS.The introduction to MCS is then followed by a review of the application of MCS to the particular field of multimodal biometric person authentication in the last 25 years, as a prototypical area in which MCS has resulted in important achievements. This review includes general descriptions of successful MCS methods and architectures in order to facilitate the export of them to other information fusion problems.Based on the theory and framework introduced here, in the companion paper we then develop in more technical detail recent trends and developments in MCS from multimodal biometrics that incorporate context information in an adaptive way. These new MCS architectures exploit input quality measures and pattern-specific particularities that move apart from general population statistics, resulting in robust multimodal biometric systems. Similarly as in the present paper, methods in the companion paper are introduced in a general way so they can be applied to other information fusion problems as well. Finally, also in the companion paper, we discuss open challenges in biometrics and the role of MCS to advance them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.