Abstract

In a survey of herbicide responses among Illinois waterhemp half-sib populations, several were observed with differential responses to imazethapyr and thifensulfuron, two acetolactate synthase (ALS)–inhibiting herbicides. Plants from two waterhemp populations were verified resistant to imazethapyr, but susceptible to chlorimuron, using a nondestructive leaf-disc assay. Sequencing of the ALS gene revealed that imazethapyr-resistant waterhemp plants from both populations had inferred amino acid substitutions at position 653 of ALS. Depending on the population, the serine at position 653 of ALS was substituted with either asparagine (S653N) or threonine (S653T). Waterhemp lines were derived from each population to create uniformly imidazolinone-resistant (IR) waterhemp biotypes, designated IR-62 and IR-101. ALS-inhibitor responses of each IR biotype were compared with a previously identified ALS inhibitor–resistant biotype with a tryptophan to leucine substitution at position 574 (W574L) and an herbicide-susceptible control. Whole-plant dose–response experiments with waterhemp biotypes containing W574L, S653N, or S653T mutations indicated that each biotype was resistant to imazethapyr, but only the biotype with a W574L mutation was resistant to thifensulfuron. In vitro ALS-activity assays revealed unique patterns of cross-resistance among protein extracts derived from each biotype in response to imazethapyr, thifensulfuron, cloransulam, and pyrithiobac. In conclusion, three different forms of target-site–based resistance to ALS inhibitors have been identified in waterhemp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.