Abstract

This paper proposes a field theory of constrained swelling of pH/temperature sensitive cationic hydrogels in equilibrium with their chemical and mechanical environment. A general formulation is obtained based on a variational approach, yielding a set of governing equations coupling mechanical and chemical equilibrium conditions, which is employed to investigate some benchmark problems involving homogeneous and inhomogeneous swelling of the pH/temperature sensitive cationic hydrogels. The simulation results are compared with experimental data available in the literature to verify the present model. By encoding the underlying physical and chemical laws into the deep learning neural networks as prior information, we introduce the multiphysics-informed deep learning (MIDL) to investigate the effects of temperature and pH on the distributions of concentration of solvent and stresses in the hydrogel shell. In addition, the MIDL is extended to solve inverse identification problem of inhomogeneous swelling of core-shell hydrogels, which yields a reasonable identification accuracy even if the observed data is corrupted due to uncorrelated noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.