Abstract
A hydrogel consists of a cross-linked polymer network and solvent molecules. Depending on its chemical and mechanical environment, the polymer network may undergo enormous volume change. The present work develops a general formulation based on a variational approach, which leads to a set of governing equations coupling mechanical and chemical equilibrium conditions along with proper boundary conditions. A specific material model is employed in a finite element implementation, for which the nonlinear constitutive behavior is derived from a free energy function, with explicit formula for the true stress and tangent modulus at the current state of deformation and chemical potential. Such implementation enables numerical simulations of hydrogels swelling under various constraints. Several examples are presented, with both homogeneous and inhomogeneous swelling deformation. In particular, the effect of geometric constraint is emphasized for the inhomogeneous swelling of surface-attached hydrogel lines of rectangular cross sections, which depends on the width-to-height aspect ratio of the line. The present numerical simulations show that, beyond a critical aspect ratio, creaselike surface instability occurs upon swelling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.