Abstract

In-service welding simulations were carried out using a multiphysics finite element analysis (FEA). Calculated data as temperature and thermal cycles were validated by comparing them with experimental welding results carried out in a carbon steel pipe attached to a water loop. Two in-service welding cases were tested using the GMAW-P process with and without the assistance of induction preheating. The molten zone of weld macrographs and the simulated models were matched with excellent accuracy. The great agreement between the simulation and experimental molten zone generated a maximum error in the peak temperature of 1%, while in the cooling curve, the error was about 10% at lower temperatures. A higher hardness zone appeared in the weld’s toe within the CGHAZ, where the maximum induction preheating temperature achieved was 90°C with a power of 35 kW. Induction preheating reduced the maximum hardness from 390 HV to 339 HV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.