Abstract

In this investigation, thermal simulated specimens were used to investigate the effect of second peak temperature during in-service welding on characteristic fracture energy and microstructure feature of the subcritically (SC), intercritically (IC), supercritically (SCR), and unaltered (UA) reheated coarse grain heat-affected zones (CGHAZs). The API X70 high-strength pipeline micro-alloyed steel was subjected to processing during in-service welding by applying double thermal cycle shielded metal arc welding process with heat input of 9.3 kJ/cm and thermal cycles to simulate microstructure of reheated CGHAZs. This consisted of first thermal cycle with a peak temperature of 1350 °C, then reheating to different second peak temperatures of 600, 800, 1000, and 1200 °C with a constant cooling rate of 60 °C/s. Toughness of the simulated reheated CGHAZs were assessed using Charpy impact testing at −20 °C, and the corresponding fractographs, optical micrographs, and electron micrographs have been examined. It is found that accelerating cooling rate during in-service welding has an improving effect on the microstructure of CGHAZs. Owing to small heat-input and accelerating cooling, the grain size in reheated CGHAZs is relatively small and the brittle microphases are eliminated or minimized. The Charpy impact results show that the CGHAZ fracture energy is improved after the second thermal cycle. The SC CGHAZ showed higher absorbed impact energy and the IR CGHAZ had less absorbed energy, but the phenomenon of embrittlement in IR CGHAZ is not serious. Therefore, it can be concluded that the fracture energy of CGHAZ and IR CGHAZ can be improved by accelerating cooling with appropriate cooling rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call