Abstract

The effect of reheating the coarse grain heat affected zone (CGHAZ) at various second peak temperatures on microstructure and its corresponding effect on impact toughness of API X65 and X80 was studied under simulated condition. When the CGHAZ was reheated to a temperature similar to the first thermal cycle i.e. 1300 °C (unaltered CGHAZ (UA CGHAZ)), ferrite and pearlite phases were observed for X65 steel, similar to CGHAZ, due to which not much fluctuation was measured in the Charpy impact toughness. Whereas in the case of X80 steel, Martensite/Austenite (M/A) constituents were observed in grain interior and along the prior austenite grain (PAG) boundaries, due to which a slight drop in the Charpy impact toughness was measured. When the CGHAZ was reheated to the super-critical temperature i.e. 1050 °C (SCR CGHAZ), fine ferrite and pearlite was observed in both the steels, which resulted in the improved toughness at room temperature and at −20 °C. Impact toughness was significantly deteriorated in both the steels when the second peak temperature was in the intercritical range i.e. 800 °C (IC CGHAZ). This resulted in grain coarsening in the case of X65 and in X80 steel, coarsened PAGs along with M/A constituents inside the grains and the in-network arrangement along the grain boundaries combined to cause brittle failure with very low toughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.