Abstract

A finite volume based Eulerian-Lagrangian model has been created within OpenFOAM® in order to predict the behavior of particle clouds as well as particle deposition thicknesses on substrates under the influence of electro-static effects. The model resolves close to electrode effects as well as phenomena within the entire deposition chamber. It considers fluid dynamic effects, particle inertia, gravity, electric- as well as mechanic particle-particle interaction, corona formation, dynamic particle charging mechanisms, and coupling of particle motion to Reynolds-Averaged Navier-Stokes (RANS) based flow simulations. Resulting deposition pattern predictions were experimentally validated. It is demonstrated qualitatively and quantitatively that the measured deposition thicknesses and patterns vary by; i) applied voltage, ii) airflow rate, pistol-substrate iii) distance and iv) angle. Furthermore, the software has been prepared such that it works on the cloud computing software KaleidoSim®, which enables the simultaneous browser-based running of hundreds of cases for large parameter studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.